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Abstract    Federated learning (FL) is an emerging privacy-preserving distributed computing paradigm, enabling numer-

ous clients to collaboratively train machine learning models without the necessity of transmitting clients’ private datasets

to the central server. Unlike most existing research where the local datasets of clients are assumed to be unchanged over

time throughout the whole FL process, our study addresses such scenarios in this paper where clients’ datasets need to be

updated periodically, and the server can incentivize clients to employ as fresh as possible datasets for local model training.

Our primary objective is to design a client selection strategy to minimize the loss of the global model for FL loss within a

constrained  budget.  To  this  end,  we  introduce  the  concept  of ‘‘Age  of  Information’’ (AoI)  to  quantitatively  assess  the

freshness of local datasets and conduct a theoretical analysis of the convergence bound in our AoI-aware FL system. Based

on the convergence bound, we further formulate our problem as a restless multi-armed bandit (RMAB) problem. Next, we

relax the RMAB problem and apply the Lagrangian Dual approach to decouple it into multiple subproblems. Finally, we

propose a Whittle’s Index Based Client Selection (WICS) algorithm to determine the set of selected clients. In addition,

comprehensive simulations substantiate that the proposed algorithm can effectively reduce training loss and enhance the

learning accuracy compared with some state-of-the-art methods.

Keywords    federated learning, Age of Information, restless multi-armed bandit, Whittle’s index

 
 

1    Introduction

Federated  learning  (FL)[1–5] is  an  emerging  and

promising distributed machine learning paradigm, fa-

cilitating the collaborative training of a global model

by a potentially large number of clients under the co-

ordination  of  a  central  server.  A  typical  FL  proce-

dure usually spans multiple rounds until a satisfacto-

ry  global  model  is  achieved[6].  On  the  one  hand,  FL

can  efficiently  safeguard  clients'  data  privacy  by  en-

abling the retention of their training datasets locally.

On the other hand, since only local model parameters

rather than complete datasets are transmitted to the

server,  FL  can  significantly  reduce  communication

overhead.  Owing  to  these  unique  advantages,  multi-

ple  efficient  and  cost-effective  industrial  applications

of  FL are  springing  up  in  recent  years,  such  as  We-

Bank  employing  it  for  finance  and  insurance  data
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analysis①,  Owkin  for  biomedical  data  analysis②,  and

MELLODDY for drug discovery③. Meanwhile, consid-

erable research efforts have been directed towards ad-

dressing diverse FL issues, including convergence rate

optimization[7, 8],  accuracy  enhancement[9, 10],  privacy

protection[11–13], and resource allocation[14–17].

In general,  most existing work assumes that each

client possesses a pre-existing dataset and will consis-

tently  employ  this  dataset  for  local  model  training

during  the  whole  FL  process.  Nevertheless,  in  many

real-world  scenarios,  particularly  those  involving

streaming  data,  the  data  is  continuously  generated

along with the time. When participating in FL, there

is  a  strong  incentive  for  clients  to  utilize  as  fresh

datasets  as  possible  to  train  their  local  models.  This

preference is rooted in the belief that fresh data pro-

vides  a  more  accurate  characterization  of  model  pa-

rameters. For instance, a server orchestrates multiple

clients  to  collaboratively  train  an  object  identifica-

tion model via FL, e.g., recognizing formulas on liter-

ature  and  identifying  traffic  signs  on  photos,  where

clients may employ crowdsourcing techniques to peri-

odically  recruit  mobile  users  for  generating  labeled

datasets.  Naturally,  the  fresher  the  labeled  datasets,

the more effort needed to be devoted to the data la-

belling,  and  thus  the  labeled  datasets  will  be  more

precise.  In  such  FL  scenarios,  clients  will  inevitably

spend  some  extra  costs  in  providing  fresh  datasets,

but the total budget from the server is generally lim-

ited.  Consequently,  a  pivotal  problem  that  needs  to

be dealt with is how to select suitable clients in each

round  under  the  limited  budget  while  enabling  the

server to minimize the loss of the global model.

In  this  paper,  we  introduce  the  well-known “Age

of Information” (AoI)[18] metric to indicate the fresh-

ness of datasets, which is defined as the elapsed time

of  data from being collected to being trained for  up-

dating  local  models  by  clients.  The  smaller  the  AoI

value of a dataset, the fresher the corresponding data,

and  thus  the  more  precise  the  trained  local  models.

Accordingly,  the  above-mentioned  problem is  actual-

ly instantiated as determining a client selection strat-

egy to minimize the loss of the global model under a

given budget, while considering the AoI values of the

datasets. Unlike most traditional optimal selection is-

sues  with  budget  constraints,  such  an  AoI-aware

problem has two special challenges as follows. Firstly,

although  the  server  can  reduce  the  loss  of  a  global

model by selecting some clients in each round to up-

date  their  local  datasets  and  reduce  the  AoI  values,

there is  no obvious quantitative relationship between

the  loss  of  the  global  model  and  the  decrease  of  the

AoI values of clients' datasets. Secondly, the AoI val-

ue of each client's dataset will increase along with the

rounds of local training and will return to zero until it

is  selected  to  update  its  own  dataset.  This  indicates

that  the  client  selection  process  and  the  correspond-

ing  AoI  values  are  not  independent  with  each  other

across  different  rounds  of  FL.  Both  make  the  client

selection  problem  much  more  challenging,  especially

under the budget constraint.

To  tackle  the  above  challenges,  we  first  derive  a

convergence upper bound for the novel AoI-aware FL

system. This upper bound shows that the loss of the

global  model  is  positively  correlated  to  the  freshness

of  local  datasets,  i.e.,  the  high  AoI  values  of  local

datasets will be detrimental to the convergence of the

global  model.  Building  upon  this  insight,  we  trans-

form  the  problem  of  selecting  the  optimal  clients  to

minimize  global  model  loss  into  an  equivalent  prob-

lem: selecting clients  with the minimum average AoI

value.  Subsequently,  we  formulate  this  problem as  a

restless multi-armed bandit (RMAB) problem, where-

in each client is regarded as an arm, and the AoI val-

ues  of  clients'  local  datasets  are  seen  as  the  corre-

sponding state. In order to solve this RMAB problem,

we  propose  the  Whittle's  Index  Based  Client  Selec-

tion  (WICS)  algorithm.  In  WICS,  we  calculate  the

Whittle's index for each client during each FL round.

Based on these indexes, we employ a greedy strategy

to pick out appropriate clients while ensuring that the

budget  of  the  server  is  no  larger  than  the  prefixed

threshold.  In a nutshell,  our  major  contributions  can

be summarized as follows.

• We  introduce  a  novel  AoI-aware  FL  system,

where  the  server  can  select  some  clients  to  provide

fresh datasets  for  local  model  training so as  to mini-

mize the loss of the global model under a budget con-

straint. To the best of our knowledge, this is the first

FL work that  takes  into  account  the  freshness  of  lo-

cal datasets for client selection.
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• We  derive  a  convergence  upper  bound  for  the

AoI-aware  FL  system,  whereby  we  analyze  the  rela-

tionship between the training loss of the global model

and the AoI values of clients' local datasets. Based on

the analysis, we model the client selection problem as

an RMAB problem to be solved.

• We  deduct  the  RMAB  problem  into  a  decou-

pled model and theoretically derive the optimal strat-

egy  for  each  client,  based  on  which  we  propose  the

WICS  algorithm  by  leveraging  the  Whittle's  index

methodology. Moreover, we provide a rigorous bound

of approximate optimality.

• We conduct extensive simulations to verify the

performance  of  WICS  based  on  two  real-world

datasets  and  various  machine  learning  models.  The

results  corroborate  that  the  performance  of  WICS  is

better than some baselines.

This  paper  is  an  extended  version  of  our  confer-

ence paper[19]. They mainly differ in the following as-

pects.  1)  In  this  paper,  we  re-conduct  a  comprehen-

sive  theoretical  analysis  for  WICS,  in  which  we  de-

rive a more rigorous and tight bound of approximate

optimality. 2) In order to improve client selection effi-

ciency, we update the algorithm process of WICS and

provide a more detailed example.  3)  We add various

discussions  on  possible  extensions  of  WICS  for  more

practical  scenarios.  Meanwhile,  we  point  out  the  po-

tential  directions for  future in-depth research.  4)  We

carry  out  more  sufficient  experiments  with  the  sup-

port  vector  machines  model,  which  can  demonstrate

the significant performance of WICS for more practi-

cal applications.

The  remainder  of  the  paper  is  organized  as  fol-

lows. In Section 2, we introduce our model and prob-

lem.  Then,  we  carry  on  the  convergence  analysis  in

Section 3.  The WICS algorithm is  elaborated in Sec-

tion 4. Next, we evaluate the performance of WICS in

Section 5.  After  reviewing  related  work  in Section 6,

we  make  a  discussion  on  the  potential  directions  in

Section 7. Finally, we conclude the paper. For ease of

presentation, all proofs are moved to the Appendix④. 

2    System Overview and Problem

Formulation
 

2.1    Federated Learning with Data Collection

We  consider  an  AoI-aware  FL  system[19],  as  de-

picted in Fig.1, which consists of a central server and

N = {1, 2, ..., N}

T

B

a  set  of  clients  represented  by .  In

traditional  FL  systems,  the  local  dataset  of  each

client  is  generally  given  in  advance  and  will  remain

unchanged  during  the  FL  process.  In  contrast,  our

system allows clients to update their local datasets by

spending some costs, enabling them to employ up-to-

date data for local model training. The fresher the lo-

cal  datasets  provided  by  clients,  the  more  accurate

the global model obtained by the FL system will  be.

Besides,  the time is  divided into  equivalent-length

time slots, in each of which the server will conduct a

round  of  federated  learning  under  a  predefined  bud-

get. For simplicity, we assume that the server has the

same budget in each round, denoted by , which can

be easily  extended to the case of  heterogeneous bud-

gets.  More  specifically,  the  joint  training  process  in

the AoI-aware FL system can be roughly described as

the  following  steps.  For  ease  of  reference  and under-

standing, we list major notations in Table 1.

Nt (⊆ N )

t ∈ T = {1, 2, ..., T} i ∈ Nt

Di
t

i

i

ni

pi i

ωt−1

1) Client Selection for Updating Data. The server

selects  a  subset  of  clients  to  update  their

local  datasets  at  the  beginning  of  each  time  slot

.  For  each  client ,  we  de-

note its local dataset as , which can be regarded as

the  data  collected  from some fixed  point  of  interests

or  purchased  from  some  preferred  data  owners  by

client . The dataset might be updated on-demand by

the client,  so  it  might  vary over  different  time slots.

For simplicity, we assume that the dataset of client 

across different time slots remains the same size (de-

noted by ). This assumption is rational since we can

randomly sample the same number of data items from

different sizes of datasets. Moreover, each client might

spend some costs in obtaining its local dataset, so the

server will pay a reward, denoted by , to client  as

the  compensation.  Meanwhile,  the  server  publicizes

global  model  parameters,  denoted  by ,  to  all
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Fig.1.  Architecture of FL with fresh/stale local data.
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ωt−1

(t− 1) ω0

clients for their local training.  is the result of the

-th round of federated learning, and we use 

to represent the initial global model parameter.

i∈N

ωt−1

i

2) Local  Training.  Each client  performs lo-

cal  training after  receiving the  global  model  parame-

ter  from  the  server.  The  loss  function  of  local

training for client  can be described as 

Ft, i(ω;Di
t) =

1

ni

∑
x∈Di

t

f(ω;x),

ω Di
t

ni Di
t f(·)

ωt−1 i

τ

ωi
t

where  is the model parameter,  is the local train-

ing  dataset,  is  the  data  size  of ,  and  is  a

server-specified loss function, e.g., mean absolute loss,

mean squared loss, or cross entropy loss. Then, based

on the received global model parameter , client 

performs  steps of mini-batch stochastic gradient de-

scent to compute its local model parameter  as:
 

ωi, k+1
t = ωi, k

t − ηt∇Ft, i(ω
i, k
t ; ξi, k

t ), (1)

k={0, ..., τ−1} ξi, k
t k

Di
t ηt t

ωi, τ
t =ωi

t ωi, 0
t =ωt−1

i ωi
t

where ,  is  the -th  mini-batch

sampled from , and  is the learning rate in the -

th  round.  In  (1),  there  is  and .

Finally, client  uploads  to the server.

ωt

3) Model Aggregation. As shown in (2), the server

aggregates the received local model parameters to ob-

tain the global model parameter , i.e., 

ωt =
N∑
i=1

ni

n
ωi

t, (2)

n =
∑N

i=1
ni

ωt

where  is  the  total  quantity  of  training

data in each time slot. Then, the server sends the up-

dated global model  back to each client for the next

round of local training. The above steps of FL will be

repeated until the total time is exhausted.

Overall, the global loss function is defined as: 

F (ω) ≜ 1

T

T∑
t=1

N∑
i=1

ni

n
Ft, i(ω;Di

t).

ω∗

ω∗ = argminω F (ω).

The goal of the whole FL system is to obtain the

optimal model parameter vector  so as to minimi-

ze the global loss function, i.e.,  

2.2    Problem Formulation

t ui(t)

i Di
t

Di
t

i

In  this  paper,  we  focus  on  the  data  freshness  in

FL  systems.  Drawing  inspiration  from  sensing  sys-

tems,  we  employ  the  concept  of  AoI  to  quantify  the

freshness  of  clients'  local  datasets.  In  this  context,

AoI is defined as the elapsed time since the local da-

ta was generated. To be specific, let the current round

of FL be in the -th time slot and  be the latest

update time slot of client 's  local dataset .  Then,

we use (3) to express the AoI value of the dataset 

(referred to as client 's AoI for simplicity), i.e., 

∆i(t) = t− ui(t). (3)

∆i(0) = 0

i

Especially,  for all clients. Furthermore, the

dynamics of client 's AoI can be described as follows: 

∆i(t) =

{
∆i(t− 1) + 1 , i /∈ Nt,
0 , otherwise.

(4)

Nt t ∈ T

B

Aπ(t)= {aπ
1 (t), ..., a

π
N(t)} t ∈ T

It  is  important  to  highlight  that  different  client

selection  strategies  can  result  in  various  local  data

freshness  even  for  the  same  client.  Moreover,  these

client  selection  strategies  can  significantly  influence

the loss of the global model, as the freshness of local

data  directly  impacts  the  quality  of  local  training.

Our  objective  is  to  minimize  the  loss  of  the  global

model after the whole FL process by carefully select-

ing the optimal client set  in each time slot 

while  adhering  to  the  constraint  of  the  limited  bud-

get . Notably, the client selection strategies consid-

ered in this paper are non-anticipative, i.e., these are

strategies that do not use future knowledge in select-

ing clients. To formally represent these strategies, we

define  ( ) to indicate the

 

Table  1.    Description of Major Notations

Variable Description

i, t Index of client and time slot, respectively

N , T Set of clients and time slots, respectively

Nt tSet of selected clients in time slot 

Di
t i tLocal dataset of client  in time slot 

F (ω) ωGlobal loss function with parameter vector 

Ft, i(ω) i tLoss function of client  in time slot 

ω0,ω∗ Initial and optimal model parameter vector

ωt,ωi
t

i t
Global model parameter vector and local model
parameter vector of client  in time slot , respectively

ni, n iSize of client 's local dataset and total size of all
clients' local datasets, respectively

k, τ Index and total number of local iterations,
respectively

ξi,kt k Di
tThe -th mini-batch sampled from 

ηt tLearning rate in time slot 

η̄, η̃ Minimum and maximum of the learning rate,
respectively

pi iPayment of client  for obtaining fresh data

B Budget of the server per time slot

ui(t) Di
tLatest update time slot of the dataset 

∆i(t) i tAoI value of client  in time slot 
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t

ai(t)=1 i

i∈Nt

ai(t)=0 i Nt

i /∈Nt

selection  status  of  each  client  in  the -th  time  slot.

Specifically,  if ,  it  implies  that  client  is  se-

lected  in  the  time  slot  (i.e., );  conversely,  if

, it signifies that client  falls outside  (i.e.,

). Then, we can formulate the problem as: 

P1 : min
π∈Π

E(F (ωT ))− F ∗, (5)
 

s.t. aπ
i (t) ∈ {0, 1},∀i ∈ N ,∀t ∈ T , (6)

 

∆i(t) = 1{aπ
i (t)=0} (∆i(t− 1) + 1) , (7)

 

N∑
i=1

aπ
i (t)pi ⩽ B, ∀t ∈ T . (8)

ωT

T F ∗ = F (ω∗)

E[F (ωT )]− F ∗

T F ∗

E[F (ωT )]− F ∗

ωT

1{·}

Here,  in  (5)  is  the  aggregated global  model  after

 rounds,  is the optimal global loss, and

 is the gap between the expected glob-

al  loss  after  rounds  and .  Naturally,  the  closer

 is  to  zero,  the  better  is  the  perfor-

mance  of .  The  constraint  in  (6)  indicates  that

each client can only be selected at most once by the

server for updating its local dataset in each time slot.

(7)  is  the  reformulation  of  (4),  i.e.,  the  dynamics  of

each client's AoI, where  is an indicator function.

(8) restricts the cost of the server, i.e., the total pay-

ment cannot exceed the budget in each round.

ωT

E[F (ωT )]

Solving Problem P1, however, is quite challenging

due  to  the  following  two  aspects.  On  the  one  hand,

we  do  not  know how the  clients'  AoI  values  will  af-

fect  the  final  model  parameter  and  the  corre-

sponding  loss  function  before  we  actually

conduct  the  FL  process.  Hence,  we  need  to  analyze

the internal connection between them as we will show

later.  On the  other  hand,  the  client  selections  across

different rounds of FL are not independent, i.e., each

client selection operation will  be affected by those in

previous  rounds  due  to  the  dynamics  of  AoI,  which

makes the design of the client selection strategy much

more intractable. 

3    Convergence Analysis

To identify the impact of each client's AoI on the

global model, we perform a rigorous convergence anal-

ysis of our AoI-aware FL system. We start with sev-

eral important assumptions on the local loss function.

t ∈ {1, 2, ..., T} i ∈ {1, 2, ...,
N} Ft, i β ∀ ω1 ω2

Ft, i(ω2)− Ft, i(ω1) ⩽ ⟨∇Ft, i(ω1), ω2 − ω1⟩ + (β/2)

∥ω2 − ω1∥2

Assumption 1. For all , 

,  is -smooth,  that  is,  for , ,

.

t∈{1, 2, ..., T} i∈{1, 2, ...,
N} Ft, i µ ∀ ω1 ω2

Ft, i(ω2) − Ft, i(ω1) ⩾ ⟨∇Ft, i(ω1), ω2 − ω1⟩+ (µ/2) ∥
ω2−ω1∥2

Assumption  2. For  all , 

,  is -strongly  convex,  i.e.,  for , ,

.

t ∈ {1, 2, ..., T} i ∈ {1, 2, ...,
N}

Eξ(∇Ft, i(ω; ξ)) = ∇Ft, i(ω)

Assumption 3. For all , 

, the stochastic gradients of the loss function is un-
biased, i.e., .

t∈ {1, 2, ..., T} i∈{1, 2, ...,
N}

Eξ∥∇Ft, i(ω; ξ)∥2 ⩽ G2
i +∆i(t)σ

2
i

Assumption  4. For  all , 

, the  expected  squared  norm  of  stochastic  gradi-
ents is bounded, i.e., .

Ft, i(ω)

ω

Assumptions  1–3  are  commonly  adopted  in  vari-

ous  existing  convex  federated  learning  studies[20, 21].

These  assumptions  ensure  that  the  gradient  of

 does not change too rapidly or slowly with re-

spect  to ,  and  that  the  stochastic  gradients  sam-

pled from local datasets are unbiased. It is worth not-

ing that models with convex loss functions like logis-

tic  regression  (LR)[22] and  support  vector  machines

(SVM)[23] adhere to Assumption 2. The evaluation re-

sults in Section 5 demonstrate that our algorithm al-

so performs well with non-convex loss functions, e.g.,

convolutional neural network (CNN)[24].

Eξ∥∇Ft, i(ω; ξ)∥2

G2
i

i

Eξ∥∇Ft, i(ω; ξ)∥2 ∆i(t)

σ2
i

i

i

t ∆i(t) = 0

Eξ∥∇Ft, i(ω; ξ)∥2 ⩽ G2
i

Assumption 4, however, is a novel assumption we

made for our AoI-aware FL system. Unlike the gener-

al  assumptions  made in other  FL systems,  which as-

sume  that  is  bounded  by  an  inher-

ent  bound  of  client ,  we  take  the  impact  of  the

client's  AoI  on  model  training  into  consideration.

More, specifically, we assume that the upper bound of

 is  positively  correlated  with ,

and the coefficient  reflects the sensitivity of client

's local dataset to freshness. The potential insight is

that a smaller AoI value means a fresher local dataset

and that better models can be trained, which is con-

sistent with a smaller gradient norm indicating a bet-

ter model performance when the loss function is con-

vex[19]. Particularly, if the server selects client  to up-

date  its  local  dataset  in  round ,  meaning ,

Assumption 4 will  degrade to ,

which is consistent with assumptions in prior work[20, 21].

It  is  noteworthy  that  all  three  loss  functions  (mean

absolute  loss,  mean  squared  loss,  or  cross-entropy

loss) satisfy Assumptions 1–4.

η̄ = mint{ηt}
η̃ = maxt{ηt}

η̄ < 2/µ

ω0

T

Theorem  1 (Convergence  Upper  Bound[19]).  For
the  sake  of  clarity,  we  define  and

.  Meanwhile,  we  suppose  that  Assump-
tions 1–4 hold and the step size meets . Then,
the FL training loss after the initial global model  is
updated using (2) for  rounds, which satisfies: 
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E(F (ωT ))− F ∗ ⩽ β

2
(1− µη̄

2
)T∥ω0 − ω∗∥2+

β

2

T∑
t=1

N∑
i=1

αi (G
2
i +∆i(t)σ

2
i ) , (9)

where
 

αi =
η̃ni

µn
+Nη̃

(
τ 2η̃ +

2(τ − 1)2

µ

n2
i

n2

)
.

T

∆i(t)

ni/n

Theorem 1 explicitly  outlines  the relationship be-

tween various factors and the global loss in our AoI-

aware  FL  system[19].  The  first  term  of  the  upper

bound geometrically decreases with the total  number

of rounds , implying that the stochastic gradient de-

scent  makes  progress  towards  the  optimal  solution.

The second term of (9) is determined by the AoI val-

ue  of  each  client's  local  dataset  in  each  round.  The

fresher  the  local  dataset  is,  the  smaller  the  value  of

 and the  second term will  be.  Moreover,  as  the

coefficients in the second term depend on the aggrega-

tion weight , a client with more local data has a

larger impact on the training loss than those with less

local data.
 

4    Problem Deduction and Algorithm Design

In this section, we propose the client selection al-

gorithm,  named  WICS.  First,  we  utilize  the  conver-

gence upper bound to transform the optimization ob-

jective  of  Problem P1.  To minimize  the  average  AoI

value, we then formulate the AoI minimization prob-

lem  as  a  restless  multi-armed  bandit  (RMAB)  prob-

lem[25].  Subsequently,  we  relax  the  RMAB  problem

and employ the Lagrangian Dual approach to decou-

ple it down into subproblems. Next, we determine the

optimal  strategy  for  each  of  these  decoupled  prob-

lems.  Finally,  we  derive  a  closed-form  expression  for

the Whittle's index and present a detailed algorithm.
 

4.1    Problem Transformation

T

According  to  Theorem  1,  we  obtain  the  conver-

gence bound of the global model after  rounds. It is

not difficult to observe that we can regulate the con-

vergence  of  the  FL  process  by  controlling  the  right

side of (9). Therefore, we can convert Problem P1 by

minimizing the second term of the convergence upper

bound. After neglecting the constant term, the objec-

tive of Problem P1 can be converted as follows:
 

min
π∈Π

1

TN

T∑
t=1

N∑
i=1

ϕi∆i(t), ϕi =
αiσ

2
i βTN

2
. (10)

ϕi

αi σ2
i αi

ni

It is important to note that the weight  in (10)

is dependent on  and , and  is closely associat-

ed  with .  This  signifies  that  the  size  of  the  local

dataset and its sensitivity to data freshness will signif-

icantly affect the client selection results during the FL

process.

Based  on  the  above  analysis,  we  can  convert

Problem P1 into Problem P2, which is shown as fol-

lows: 

P2 : min
π∈Π

1

TN

T∑
t=1

N∑
i=1

ϕi∆i(t), (11)

 

s.t. aπ
i (t) ∈ {0, 1},∀i ∈ N ,∀t ∈ T , (12)

 

∆i(t) = 1{aπ
i (t)=0} (∆i(t− 1) + 1) , (13)

 

N∑
i=1

aπ
i (t)pi ⩽ B, ∀t ∈ T . (14)

 

4.2    RMAB Modeling and Solution

To address Problem P2 (i.e., (11), (12), (13), and

(14)), we formulate it as an RMAB problem by utiliz-

ing the stochastic control theory. Unlike classic multi-

armed  bandit  problems[26],  where  the  unused  arms

neither yield rewards nor change states and the states

of  all  arms  are  known  at  any  time,  the  arms  in

RMAB might still change states according to various

transition rules even when they are not being pulled.

In this paper, each client is seen as a restless bandit,

and  the  corresponding  AoI  value  is  regarded  as  the

state[19].  Note  that  the  AoI  value  evolves  in  every

time  slot,  even  if  the  client  is  not  selected.  Unfortu-

nately,  the RMAB problem is  usually  PSPACE-hard

(Polynomial  Space  Hard)[25].  Thus,  we employ Whit-

tle's methodology to address this problem[27].

Firstly,  we  relax  Problem  P2  by  replacing  the

budget constraint (i.e., (14)) with a relaxed version: 

1

TN

T∑
t=1

N∑
i=1

aπ
i (t)

pi

B
⩽ 1

N
, ∀t ∈ T .

Then,  we  leverage  the  Lagrangian  Dual  approach  to

transform  Problem  P2  into  a  max-min  problem,

which  can  be  represented  by  (15),  (16),  (17),  and

(18), i.e., 
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P3 : maxλ minπ∈Π L(π, λ), (15)
 

s.t. aπ
i (t) ∈ {0, 1},∀i ∈ N ,∀t ∈ T , (16)

 

∆i(t) = 1{aπ
i (t)=0} (∆i(t− 1) + 1) , (17)

 

λ ⩾ 0. (18)

L(π, λ)Here, the Lagrange dual function  is given

by 

L(π, λ) =

T∑
t=1

N∑
i=1

ϕi∆i(t)

TN
+ λ

(
1

TN

T∑
t=1

N∑
i=1

aπ
i (t)

pi

B
− 1

N

)

=
1

TN

T∑
t=1

N∑
i=1

(
ϕi∆i(t) + λaπ

i (t)
pi

B

)
− λ

N

=
1

N

N∑
i=1

1

T

(
T∑

t=1

(
ϕi∆i(t)+λaπ

i (t)
pi

B

))
− λ

N
,

λwhere  is the Lagrange multiplier.

minπ∈Π L(π, λ)
π∗

L(π, λ) λ

λ/N

L(π, λ)

In  order  to  tackle  Problem  P3,  we  need  to  ad-

dress  the  problem  first.  This  involves

finding  the  optimal  client  selection  strategy  that

minimizes  for  any  given .  Notably,  we  can

ignore  the  constant  term  and  focus  on  solving

 for  each  individual  client  separately.  This

problem associated  with  each  client  is  actually  a  de-

coupled  problem,  in  which  the  goal  is  to  decide

whether  or  not  the  client  should  be  selected  to  up-

date  its  local  dataset  in  each  time  slot.  Specifically,

we  formalize  the  decoupled  problem  over  an  infinite

time-horizon as: 

P4 : min
π∈Π

{
lim

T→+∞

1

T

T∑
t=1

(
Bϕi

pi

∆i(t) + λaπ
i (t)

)}
,

(19)
 

s.t. aπ
i (t) ∈ {0, 1},∀i ∈ N ,∀t ∈ T , (20)

 

∆i(t) = 1{aπ
i (t)=0} (∆i(t− 1) + 1) , (21)

 

λ ⩾ 0. (22)

∆i(t) aπ
i (t)

P(·)
Ci(·)
t t+ 1

Then,  we begin to deal  with the decoupled prob-

lem (i.e., (19), (20), (21), and (22)) by modeling it as

a Markov decision process  (MDP).  This  process  con-

sists of the AoI state , the control variable ,

the state transition functions , and the cost func-

tion . Specifically, the state transition from time

slot  to  time  slot  in  MDP  is  deterministic,

which can be described by (23), i.e., 

P(∆i(t+ 1) = ∆i(t) + 1|aπ
i (t) = 0) = 1,

P(∆i(t+ 1) = 0|aπ
i (t) = 0) = 0,

P(∆i(t+ 1) = ∆i(t) + 1|aπ
i (t) = 1) = 0,

P(∆i(t+ 1) = 0|aπ
i (t) = 1) = 1.

(23)

t

t+ 1

In  addition,  we  regard  the  objective  of  Problem

P4 as the cost function of MDP. In other words, the

cost function on the state transition from time slot 

to time slot  can be defined as: 

Ci(∆i(t), a
π
i (t)) ≜ (Bϕi/pi)∆i(t) + λaπ

i (t), (24)

t

λ

i

aπ
i (t) = 1

where the first term of (24) is related to the resulting

AoI  value  in  time  slot .  To  make  the  presentation

clearer, we regard the Lagrange multiplier  as a kind

of  service  charge  for  client  under  the  MDP model,

which is incurred only when . Note that the

cost  function and the service  charge are  not  the real

charge  and  cost,  which  will  only  be  mentioned  in

MDP.

Finally,  we  derive  the  optimal  strategy  of  this

MDP and prove that it is a special type of determin-

istic strategy, which is shown as follows.

π∗

i t

∆i(t) > Hi − 1

Theorem 2 (Optimal Strategy for Problem P4[19]).

Consider  the  decoupled  model  over  an  infinite  time-
horizon.  The  optimal  strategy  for  Problem  P4 is
selecting client  in each time slot  to update its lo-
cal dataset only when , where 

Hi =

⌊
−1

2
+

√
1

4
+

2λpi

Bϕi

⌋
. (25)

Hi

λ

i ∆i(t)

i

∆i(t) λ

It is worth noting that the threshold  in (25) is

a function of the service charge . Intuitively, we ex-

pect that the server selects client  when  is high

to  reduce  the  AoI  value  and  does  not  select  client 

when  is low so as to avoid the service charge  [19]. 

4.3    The WICS Algorithm

maxλ minπ∈Π L(π, λ)

π∗ minπ∈Π L(π, λ)
λ

maxλ L(π∗, λ)

λ L(π∗, λ)

maxλ L(π∗, λ)

λ i

Our  ultimate  objective  is  to  solve  the  Lagrange

dual function for Problem P3, i.e., .

Now, according to Theorem 2, we can obtain the opti-

mal strategy  as the solution of  for

any  given .  Then,  we  need  only  to  concentrate  on

the problem of , i.e., finding an optimal

 to  maximize .  Nevertheless,  solving  this

problem optimally is a complex task, and we can on-

ly  approximately  address  it  by  employing  the

Whittle's index methodology[27].  More specifically, we

still decouple the problem  to find an in-

dividual  parameter for each client  separately, de-
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λinoted by .

After  decoupling  Problem  P3,  we  turn  to  maxi-

mize 

1

T

T∑
t=1

(
Bϕi

pi

∆i(t) + λia
π∗

i (t)− Bλi

Npi

)
,

i λi

λi ∆i(0) = 0

λi

∆i(t)>Hi − 1 λi

λi

for  each  client  separately,  where  might  differ

among clients.  Actually,  it  is  a  monotonic  increasing

function  of  when  given  an  initial  state .

Furthermore,  needs to satisfy the condition of The-

orem 2, i.e., , which indicates that  is

bounded  in  each  time  slot.  Therefore,  will  maxi-

mize the average value of 

1

T

T∑
t=1

(
Bϕi

pi

∆i(t) + λia
π∗

i (t)− Bλi

Npi

)
,

∆i(t) = Hi − 1 WIi, t

WIi, t

when . We use the notation [19] to

express this critical value, and the closed-form expres-

sion of  can be derived as follows: 

WIi, t ≜ λi(∆i(t)) =
(∆i(t) + 1)(∆i(t) + 2)Bϕi

2pi

,

(26)

WIi, t i

t σ2
i ni ϕi

WIi, t σ2
i , ni B

∆i(t) σ2
i , ni B WIi, t

∆i(t) λi

∆i(t)

λi

where  stands for client 's Whittle's index (WI)

in time slot . Note that  and  are included in ,

so  that  the  index  is  dependent  on , ,

and . Since , and  are constants,  is

essentially a function of . This indicates that 

can also be seen as a function of . In general, the

Whittle's  index  is  not  the  same  for  different  clients,

which means that the values of  that optimize dif-

ferent decoupled problems will be heterogeneous.

N
(i1, i2, ..., iN) WIi1, t ⩾ WIi2, t ⩾ ... ⩾ WIiN , t

Nt

B = 5

According to the Whittle's index, we can now de-

sign the WICS algorithm to address Problem P3 (and

also Problem P2 based on the Lagrange duality). The

fundamental  idea  is  to  select  clients  with  higher  WI

values in each time slot while ensuring that the bud-

get  is  not  exceeded.  As  outlined  in Algorithm 1,  we

first compute the WI value for each client using (26)

and  then  sort  all  clients  in  into  the  set

 such that 

(steps  1–3).  Subsequently,  we  greedily  select  clients

into a winning set  and allocate corresponding pay-

ments to the winning clients until the remaining bud-

get  cannot  afford the  next  client  (steps  4–10).  For  a

better  understanding,  we  provide  a  straightforward

example  to  clearly  present  the  key  process  of Algo-

rithm 1, as depicted in Fig.2. In each round, we calcu-

late the values of each client's AoI and WI. When set-

ting the budget of the server as , we can effec-

tively pick out suitable  clients  according to the sort-

ed  results  of  Whittle's  indexes.  In Fig.2,  the  check

mark  indicates  that  the  client  is  selected  in  this

round.

Algorithm 1. Whittle's Index Based Client Selection (WICS)

{∆1(t), ...,∆N(t)}
{ϕ1, ..., ϕN}

{p1, ..., pN} B

Input: the set of clients' AoI values , the set of

clients'  weights ,  the  set  of  clients'  payments

, the budget of the server ;

Nt+1Output: the index set of selected clients ;
i N1:   for each client  in  do

WIi, t

WIi, t

2:     Calculate  its  WI value  according to  (26)  and send

   to the server;

3:   end for

(i1, i2, ..., iN)
WIi1, t ⩾ WIi2, t ⩾ ... ⩾ WIiN , t

Nt+1 k = 1

4:  The  server  sorts  the  clients  into  such  that

  ,  and  initializes  an  empty  set

   as well as ;

k ⩽ N5:  while  do∑
i∈Nt+1

(pi + pik) < B6:     if  then

Nt+1 ← Nt+1 ∪ {ik}7:       ;
8:     end if

k = k + 19:     ;
10: end while

O(N logN)

ρπ ≜ Uπ
B/LB

π LB

Uπ
B

π

π ρπ

Finally, we analyze the performance of the WICS

algorithm.  Obviously,  the  computational  overhead  of

Algorithm 1 is dominated by the sorting operation on

clients'  WI  values,  so  the  complexity  of  WICS  is

.  Additionally,  we  define  the  ratio

 to  measure  the  performance  of  strategy

, where  is a lower bound to the optimal perfor-

mance of Problem P2, and  is  an upper bound to

the performance of Problem P2 under the strategy ,

and  we  say  that  the  strategy  is -optimal.

Through  theoretical  analysis,  the  WICS  algorithm

satisfies the following theorem.

ρWI

Theorem  3 (Approximate  Optimality). The  solu-
tion produced by the WICS algorithm to Problem P2
over an infinite time-horizon is -optimal, where 

ρWI <

2M(9N − 1)
N∑
i=1

ϕi

N 2ϕmin −M

N∑
i=1

ϕi

.

M = ⌊B/pmax⌋ pmax = max{pi|i ∈ N}
ϕmin = min{ϕi|i ∈ N}
Here, , ,  and

.

ρWI

Recall that the objective of Problem P2 (i.e., (11))

is derived from the objective of Problem P1 (i.e., (5))

according to the convergence bound analysis of Theo-

rem 1. Therefore, the WICS algorithm is at least -

optimal for Problem P1. 
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5    Performance Evaluation

In this section, we evaluate the performance of the

proposed WICS algorithm with extensive simulations

on two real-world datasets. 

5.1    Evaluation Methodology

5× 5

2× 2

N N = 10

T =200 B

{25, 40, 55, 70}

1) Simulation Setup.  We conduct  extensive  simu-

lations using two widely used real datasets: MNIST[28]

and  Fashion-MNIST  (FMNIST)[29].  The  MNIST

dataset comprises 60 000 handwritten digits for train-

ing and 10 000 for testing, while the FMNIST dataset

contains 60 000 images  of  fashion  items  for  training

and 10 000 for testing. We consider both convex (e.g.,

LR  and  SVM)  and  non-convex  (e.g.,  CNN)  models.

The  CNN  architecture  consists  of  two  convolution

layers  (32  and  64  channels)  of  size ,  each  of

which is followed by  max pooling, two fully-con-

nected  layers  with 3 136 and 512  units,  and  a  ReLU

layer with 10 units.  In our experiments,  we vary the

number of clients  from 10 to 40 and set  by

default. Meanwhile, the number of time slots is set as

. Then, we generate a simplified budget  for

each time slot from the set , and we as-

pi

[5, 15]

ω0 = 0
b = 16

ηt = 0.005

ηt = 0.01

τ=10

ϕi

(0, 1)

sume that the cost parameter  is proportional to the

amount of local data while ensuring that the cost for

each client does not exceed . Next, we initialize

our  model  with  and  set  the  batch  size  as

.  Without  loss  of  generality,  we  set  the  learn-

ing  rate  of  LR  and  SVM  to  be  and  the

learning rate of CNN to be  for all time slots.

Each  client  performs  local  iterations.  After-

ward,  we  randomly  select  the  weight  from  the

range  of  according  to  (10),  which  is  similar  to

the method adopted in [30].  To illustrate the impact

of  AoI  on  local  data,  we  intentionally  mislabel  some

local  data  for  each  client  in  each  time  slot.  In  other

words, we mislabel more data if the client has a larg-

er AoI value.

2) Algorithms  for  Comparison.  Our  WICS  algo-

rithm  accounts  for  the  freshness  of  local  datasets  in

FL,  making  it  distinct  from  existing  algorithms  that

cannot  be  directly  applied  to  our  problem.  To  the

best of our knowledge, the closest algorithm that can

be adapted to our setting is  the ABS algorithm pro-

posed  by  [31].  The  ABS  algorithm  is  also  an  index-

based strategy, but it considers the age-of-update in-

stead of AoI. We need to modify the ABS algorithm

to  accommodate  the  concept  of  AoI  in  our  model.
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B = 5Fig.2.  Example for Algorithm 1 with .
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i

t ∆i(t)ϕi/pi

More specifically,  the modified ABS index of  client 

in  time  slot  is  given  by .  Similar  to  our

WICS  strategy,  the  ABS  algorithm  selects  clients

with  higher  modified  ABS  index  values  in  a  greedy

manner,  meanwhile  ensuring  that  the  budget  is  not

exceeded  in  each  time  slot.  It  is  important  to  note

that  only  the  selected  clients  can  participate  in  the

current round of FL training. For the purpose of com-

parison, we also implement the MaxPack algorithm[32]

and a random algorithm. The MaxPack algorithm di-

rectly  selects  clients  with  higher  AoI  values  while

guaranteeing the budget constraint in each time slot.

The random algorithm means that the server will pick

out clients randomly. 

5.2    Evaluation Results

In this subsection, we train three models (i.e., LR,

SVM,  and  CNN)  on  both  MNIST  and  FMNIST  to

compare the performance of different algorithms. No-

tably,  we  conduct  experiments  with  variant  budget

B

B = 40

,  which shows a similar performance. Thus, we on-

ly  illustrate  the  result  of  due  to  the  limited

space. Furthermore, unless otherwise stated, the num-

ber of clients is set as 10 in the following simulations.

First,  we  evaluate  the  performance  of  various  al-

gorithms for LR on MNIST and FMNIST in terms of

both  accuracy  and  loss,  as  illustrated  in Fig.3 and

Fig.4, respectively. Accuracy measures the number of

correct  predictions,  and  loss  quantifies  the  difference

between  the  prediction  and  actual  output.  In Fig.3,

we can observe that the achieved accuracy of all four

algorithms  gradually  rises  along  with  the  increase  of

rounds, while the achieved loss of all  four algorithms

gradually decreases with the increase of  rounds.  It  is

noteworthy that the performance of WICS in terms of

both  accuracy  and  loss  is  better  than  those  of  the

three  compared  algorithms.  Similarly,  we  conduct  a

series  of  experiments  to  evaluate  the  performance  of

four algorithms under FMNIST. We also find that the

results in Fig.4 are consistent with those in Fig.3.

Next, we evaluate the performances of all four al-
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gorithms for SVM on MNIST and FMNIST in terms

of both accuracy and loss, as depicted in Figs.5 and 6.

We see that WICS can also achieve the best results in

all  algorithms.  This  indicates  that  WICS  is  effective

for  the  models  with  a  convex  loss  function,  aligning

with the theoretical convergence bound. To verify the

effectiveness  of  WICS when the  loss  function is  non-

convex,  we  further  conduct  a  series  of  simulations

with CNN on MNIST and FMNIST. Figs.7 and 8 il-

lustrate  that  WICS  can  still  outperform  other  algo-

rithms  when  the  loss  function  does  not  satisfy  the

convex assumption.
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B

B

Additionally, we analyze the influence of the serv-

er's budget  under different models and datasets, as

depicted in Fig.9. By varying the budgets from 25 to

70, we evaluate the loss of WICS by adopting LR and

CNN under  MNIST  and  FMNIST,  respectively.  The

results reveal that a larger  value corresponds to a

smaller loss of the model. The reason is that a larger

budget  can  allow  more  clients  to  update  their  local

datasets in each time slot. That is, the local datasets

will  be  fresher,  and  the  global  model  will  achieve  a

better  learning  performance.  This  observation  aligns

with  the  convergence  upper  bound  analysis  in Sec-

tion 3.

Finally, we exhibit the performance of all four al-
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gorithms  in  terms  of  the  average  AoI  under  various

number of clients, which can be computed by 

∆ =
1

TN

T∑
t=1

N∑
i=1

ni

n
∆i(t).

B

N

N

N

The evaluation results are illustrated in Fig.10, where

we change the budget  in the range of [25, 70] and

vary the number of  clients  from 10 to 40.  These fig-

ures show that our proposed algorithm WICS consis-

tently  achieves  the  lowest  weighted  average  AoI

among  all  the  four  algorithms.  More  specifically,  the

schemes in ABS, MaxPack, and WICS outperform the

random algorithm  significantly,  and  the  performance

of  ABS  is  the  closest  when  compared  with  WICS.

Furthermore,  as  the  number  of  clients  increases,

the  weighted  average  AoI  shows  an  upward  trend.

This  is  because  when  the  budget  remains  constant,

the  number  of  clients  not  selected  by  the  server  in

each  time  slot  grows  with ,  leading  to  the  incre-

ment  of  AoI  values  during  each  time  slot.  Conse-

quently, the weighted average AoI increases with ris-

ing .  Notably,  the  findings  in Fig.10 align  with

those  in Figs.3–8,  which confirms the  validity  of  As-

sumption 4. 

6    Related Work

Client Selection for FL. Research on the client se-

lection problem in FL has  been extensive  and multi-

faceted,  taking  into  account  various  aspects  of  the

system,  such  as  statistical  heterogeneity  and  system

heterogeneity.  Various  optimization  objectives,  such

as importance sampling and resource-aware optimiza-

tion-based approaches,  have been explored[33, 34].  The

objective  of  importance  sampling  is  to  reduce  the

variance in traditional  optimization algorithms based

on  stochastic  gradient  descent.  For  example,  many

existing studies utilize metrics like clients' local gradi-

ents  or  local  loss  to assess  the significance of  clients'

local  data  and  subsequently  select  clients  based  on

data importance[35]. Additionally, resource-aware opti-

mization-based  work  encompasses  diverse  strategies,

including  CPU  frequency  allocation[14],  communica-

tion  bandwidth  allocation[36],  and  straggler-aware

client  scheduling[37],  which target  the  optimization of

various aspects of the federated learning system. How-

ever, it is worth noting that the majority of these re-

searches  operate  under  the  assumption  that  clients'

local  datasets  remain  static  throughout  the  FL  pro-
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cess.  In  contrast,  our  research  concentrates  on  the

scenario  where  clients'  local  data  needs  to  be  updat-

ed  periodically.  Although  the  authors  in  [19]  consid-

ered  the  dynamics  of  local  data,  we  provide  a  more

rigorous and comprehensive performance analysis.

Age of Information. AoI, a concept originally intro-

duced by  [18],  is  a  novel  application-layer  metric  for

measuring  freshness.  Since  its  inception,  there  have

been  a  lot  of  studies  dedicated  to  AoI  optimization,

covering  a  wide  spectrum  of  problems.  A  significant

class of problems that has attracted much attention is

how to design schedulers to minimize AoI[18, 38–41]. For

instance, Kaul et al.[18] developed an analytical model

for  mobile  crowd-learning,  which  takes  into  account

the intricate interplay between the stochastic arrivals

of  participating  users,  information  evolutions  at

points of interest, and reward mechanisms. Xu et al.[42]

designed  an  AoI-guaranteed  incentive  mechanism  to

maximize the utilities of the platform and all workers

simultaneously. Dai et al.[38] delved into how to mini-

mize  the  average  AoI  of  sensor  nodes  in  data  collec-

tion through mobile crowdsensing. The authors in [39]

tackled  the  problem  of  minimizing  AoI  in  single-hop

and  multi-hop  wireless  networks.  Fang et  al.[40] ex-

plored  the  design  of  a  joint  preprocessing  and trans-

mission  policy  to  minimize  the  average  AoI  at  the

destination  while  optimizing  energy  consumption  at

IoT devices. Meanwhile, Tang et al.[41] considered the

challenge  of  minimizing  AoI  while  adhering  to  con-

straints  on  both  bandwidth  and  power  consumption.

Despite this extensive body of work, none of these ex-

isting work consider the specific  problem of minimiz-

ing the average AoI value of local datasets in FL sys-

tems. 

7    Discussion

In  this  section,  we present  various  discussions  on

possible  extensions  of  our  proposed  algorithm  for

more  practical  scenarios  and  then  point  out  the  po-

tential directions for future in-depth research.

First, we discuss a dynamic scenario where clients

may  join  or  leave  the  system  dynamically.  In  the

client  selection phase,  we assume that  all  clients  can

continuously  participate  in  the  FL  system.  However,

for a multi-client oriented SC system, any client may

join  or  leave  anytime  online.  Consequently,  some

clients may not participate in the system during cer-

tain  periods,  i.e.,  the  platform  cannot  select  several

clients  sometimes.  Therefore,  how to address  the dy-

namic  arrival  of  clients  is  a  critical  challenge.  This

challenge  could  lead  to  new potential  research  direc-

tions,  such as the selection problem with unavailable

arms, which will be investigated in our future work.

Then, we explore the extensions of  our algorithm

that  can  adapt  to  more  fine-grained  integration  of

fresh data and stale data. For simplicity, we adopt a

coarse-grained setting about datasets,  i.e.,  the  select-

ed  client  will  update  its  whole  dataset  and  omit  the

effect of stale data. Actually, these chosen clients may

still make use of their old data when performing local

training.  Therefore,  we  need  to  consider  the  integra-

tion of fresh data and stale data. For example, we can

set  a  discount  factor  based  on  time,  which  can  give

more  weight  to  fresh  information.  Establishing  a  so-

phisticated  and  practical  integration  method  for  dy-

namic datasets is a very complex research issue in it-

self,  which  may  result  in  a  completely  new  research

work.

Next,  we  intend  to  consider  different  data  distri-

butions with WICS to support more realistic applica-

tions. In this paper, we consider a typical centralized

FL system where data is independent and identically

distributed  (IID).  Actually,  the  datasets  of  various

clients may be non-IID in real-world applications. If a

client only updates data of a certain category, the up-

date  may  be  ineffective.  In  our  future  work,  we  at-

tempt  to  investigate  the  influence  of  non-IID  data

and the update of non-IID data. In addition, we pri-

marily emphasize the data freshness as a key factor in

the  client  selection,  and  we  will  take  more  practical

factors into consideration.

Finally,  we  plan  to  enhance  the  performance  of

WICS from an experimental perspective. In our simu-

lations,  we evaluate  the  effectiveness  of  WICS under

several datasets and simple models.  In order to com-

prehensively validate the robustness of our algorithm,

we  will  strive  to  make  full  use  of  complex  datasets

(e.g.,  CIFAR,  ImageNet,  and  SVHN)  to  observe  the

changing trends of model accuracy, loss, and the val-

ues of AoI. On the other hand, for tackling more in-

tricate FL tasks, opting for sophisticated model archi-

tectures (e.g., RestNet, VGG, and AlexNet) could be

instrumental.  Nevertheless,  some  large  models  may

not be suitable for deployment on local weak devices,

which will be further studied in our future work. 

8    Conclusions

In  this  paper,  we  introduced  a  novel  AoI-aware
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FL system, where clients might use fresh datasets to

perform  local  model  training  and  the  server  tries  to

select  some  clients  to  provide  fresh  datasets  in  each

time slot but is constrained by a limited budget. We

employed  AoI  as  a  metric  to  quantify  dataset  fresh-

ness and performed a comprehensive theoretical anal-

ysis to establish the convergence upper bound for the

AoI-aware FL system. Building upon this analysis, we

formulated the client selection issue as a restless mul-

ti-armed bandit.  To  effectively  address  this  problem,

we  proposed  the  Whittle's-Index-based  Client  Selec-

tion  algorithm,  called  WICS.  Moreover,  we  theoreti-

cally  proved  that  WICS  can  achieve  nearly  optimal

performance  on  client  selection.  Extensive  simula-

tions on two real-world datasets demonstrated the ef-

fectiveness of our proposed algorithm. 
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